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Abstract: Growing food in urban areas could solve a multitude of social and environmental 

problems. These potential benefits have resulted in an increased demand for urban 

agriculture (UA), though quantitative data is lacking on the feasibility of conversion to 

large-scale practices. This study uses multiple land use scenarios to determine different 

spaces that could be allocated to vegetable production in Montréal, including residential 

gardens, industrial rooftops and vacant space. Considering a range of both soil-bound and 

hydroponic yields, the ability of these scenarios to render Montréal self-sufficient in terms 

of vegetable production is assessed. The results show that the island could easily satisfy its 

vegetable demand if hydroponics are implemented on industrial rooftops, though these 

operations are generally costly. Using only vacant space, however, also has the potential  

to meet the city’s demand and requires lower operating costs. A performance index was 

developed to evaluate the potential of each borough to meet its own vegetable demand 

while still maintaining an elevated population density. Most boroughs outside of the 
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downtown core are able to satisfy their vegetable demand efficiently due to their land  

use composition, though results vary greatly depending on the farming methods used, 

indicating the importance of farm management. 

Keywords: urban agriculture; land use design; Montréal; sustainable communities;  

food security; urban planning; resilience; urban development; food systems 

 

1. Introduction 

In the face of a growing global population, food security has become a pressing concern [1]. Urban 

sprawl is continuously expanding onto natural landscapes [2,3] and is often located in the vicinity of 

very rich and fertile soil that could be useful for agriculture [4]. This worrying trend has been observed 

in several different parts of the world [5–8]. By 2025, two thirds of the world’s population will be 

concentrated in urban areas, increasing the importance of a resilient food system for city dwellers [9]. 

One of the proposed solutions to make cities more sustainable is to implement local urban agriculture 

(UA) systems. UA is commonly referred to as the practice of growing, processing and distributing 

food in towns, cities and peri-urban areas [1]. Diversifying food sources and becoming at least 

partially self-sufficient through UA is one way to increase the resiliency of food systems, as well as to 

ensure food security in urban areas [10,11]. 

UA can be implemented in many forms, by people with varying levels of expertise and with a 

variety of farm management techniques [10–12]. Gardening techniques range from organic agriculture, 

in which no pesticides or herbicides are used, to hydroponics, in which crops are fed nutrients through 

water, eliminating the need for soil [13,14]. Geographic location plays a key role in determining the 

crop varieties and quantities that can be grown using soil-bound methods [11,15]. With UA, the variety 

of crops grown can also depend on the economic state of the country in question. In Western countries, 

UA practices are mainly devoted to vegetable production, as this practice tends to be more productive 

and profitable than other crops, such as cereals [16–18]. In developing countries, however, it has been 

reported that UA is also used to grow staple crops, even with the diminished returns [11,17–19]. 

While hydroponic systems generally result in extremely high yields and benefit from a limitless 

growing season, they are also associated with increased energy and manpower requirements, as well as 

higher infrastructure costs [14]. Some cohorts speculate about pollution and harmful chemicals that 

may be transferred to humans by UA products [20,21]. These contrasting benefits and drawbacks have 

resulted in a debate on the applicability of hydroponics in UA [14]. 

UA provides many social and environmental benefits for both urban and rural populations [11]. 

Duchemin et al. [12] underline numerous improvements in urban lifestyle, such as the creation of 

united, self-sufficient communities and access to fresher, healthier, local food. In addition to its social 

benefits, UA can also: create green areas and reduce the urban heat island effect [11,22]; provide urban 

residents with ecosystem services, such as water and air purification [1,23]; reduce poverty and hunger 

by recycling urban food waste [24]; create new jobs [12,25]; and reduce food miles and cities’ carbon 

footprint [12]. Given that many of these benefits are in alignment with the goals for achieving 

sustainable development, it is unsurprising that many North American cities have implemented UA 
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programs, though most operate on a relatively small scale [9,25]. More quantitative research is needed 

to assess the viability of scaling up UA practices. 

The island of Montréal is a typical mid-sized North American metropolis, with a densely packed 

downtown core that is surrounded by neighborhoods of varying incomes and suburbs along the  

city limits in the east, west and north. Known as a green city, its inhabitants have been practicing  

UA for the past 30 years, through collective gardens, city-organized community garden programs and 

personal gardens [12]. Currently undergoing a surge in popularity, multiple local food projects have 

emerged, ranging from industrial hydroponics to community gardens. Following a petition with over 

22,000 residents’ signatures, the Office de Consultation Publique de Montréal (OCPM) recently 

published a report on the state of UA in Montréal [15]. This report confirms that UA can increase 

social wellbeing and environmental quality in Montréal, but failed to provide any quantitative data on 

Montréal’s UA potential. As a case study, Montréal serves as a prototype for a typical post-industrial 

North American city and, with its relatively northern latitude, can complement case studies performed 

in other climates [11]. 

The goals of this study are threefold:  

(1) To investigate how difficult it would be for the island of Montréal to meet its domestic 

vegetable demand according to several assumptions. We crafted and based our investigation on 

a variety of urban agricultural systems, such as conventional or high-intensity gardening 

methods. (For the purpose of this paper, conventional urban agriculture will be referred to  

as low intensity. Low-intensity UA can be performed by citizens with average gardening 

experience, usually as part of a collective garden, whereas high-intensity UA refers to a farm 

management with increased inputs, such as better farmer training and more care per plant,  

either in an individual or community garden. See Duchemin et al. [6] for more information). 

Multiple land use scenarios simulate how the city might change its land use composition if 

forced to be self-sufficient in its vegetable production. 

(2) To examine the issue on another scale and comment on the ability of Montréal’s 33 boroughs 

to provide the recommended vegetable diet to their respective inhabitants through UA, while 

minimizing the use of hydroponics, due to the increased energy and financial requirements 

associated with the practice [14]. 

(3) To create a performance index to evaluate the ability of each borough to support a high 

population density while still producing enough vegetables for its inhabitants based on its land 

use availability. Boroughs that are able to sustain high population densities without having to 

resort to the use of hydroponics are considered to have the most desirable land use composition 

for efficient implementation of UA. 

2. Methods 

In order to assess Montréal’s UA potential, both consumption and production patterns were 

considered. Assigning a fixed vegetable demand target allowed for the creation of different land use 

simulations with varying production capabilities. This methodology, inspired by Martellozzo et al.’s [26] 

global approach, was tailored to the specifics of the Montréal case study. The vegetable consumption 

of each inhabitant was defined based on recommendations for an active, healthy lifestyle from several 
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international organizations [1,27,28]. The proportions and variety of vegetables consumed in Montréal 

were assessed based on the contents of a popular local community supported agriculture (CSA) 

(community supported agriculture is a food production and distribution system wherein consumers 

pre-order crop baskets and receive seasonally ripe weekly harvests, securing the farmer’s livelihood 

and reducing food waste) basket. These vegetables were then assigned a yield (g/m2) for each farming 

system based on actual agricultural yields in the province of Québec, as well as yield ratios found in 

several referred studies. Multiple production scenarios were simulated by applying a range of 

vegetable yields to portions of vacant and residential land that were designated for UA under each 

scenario. Industrial rooftop space was used for greenhouse hydroponics and was assumed to produce 

vegetables all year long. The ability of each borough to produce enough vegetables to meet its 

inhabitants’ demand was then evaluated. All spatial analyses were conducted using ArcMap 10.1 and 

Google Earth 6.2 [29,30]. 

2.1. Vegetable Demand 

A combination of data from the United Nations Food and Agriculture Organization (UN FAO), 

Statistics Canada (StatsCan), United States Department of Agriculture (USDA), the World Health 

Organization (WHO) and Institut National de Prévention et d’Éducation pour la Santé (INPES) was 

used to define recommended vegetable consumption per person [1,28,31–33]. The average recommended 

daily intake of vegetables and fruit is 500 g per person, per day, according to these organizations. 

Canada’s Food Guide [34] suggests that fresh vegetables should represent two thirds of this amount, 

resulting in a recommended daily intake 330 g of fresh vegetables per person. Vegetable demand per 

borough was calculated using population data from the 2011 Statistics Canada census [35,36]. The 

following formula was used to determine yearly vegetable demand for a given population: ܻܸܦ() = ௩ܫܸܴ∑ (/ௗ௬) ∗ ܲ ∗ 365ௗ௬௦/௬ (1)

where YVD is the yearly vegetable demand, Popb is the total population of a single borough in 2011 

and RVIv is the recommended daily intake of a single variety of vegetable, which, when summed, 

represents 330 grams of fresh vegetables daily per person. 

2.2. Vegetable Yields and Varieties 

A popular CSA basket designed and distributed by Santropol Roulant [37] (Santropol Roulant is a 

community organisation based in downtown Montréal. Founded in 1995, it is a pioneer of urban 

agriculture in the area. Some of their produce comes from a partnership with McGill University’s 

“Edible Campus” project) was used as a representative sample of the proportions and varieties of 

vegetables present in the average Montréaler’s diet. Their production choices reflect not only the 

variety of vegetables that can be grown in Montréal’s climate, but also the preferences of their 

customers, a group that was used as a proxy for the vegetable preferences of Montréal’s population as 

a whole. Vegetables that are not commonly grown hydroponically, such as potato, were not 

considered, so that a consistent vegetable mix could be selected for all farm management systems. 

As yields can vary greatly depending on the type and intensity of farming, a range of yield 

estimates were investigated [12]. Five agricultural management systems were considered:  
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high-intensity vacant space, low-intensity vacant space, high-intensity residential space, low-intensity 

residential space and rooftop hydroponics. High-intensity farming is defined as closely monitored plots 

that receive more care and can produce much higher yields than either conventional or basic organic 

agriculture, and it is usually practiced in individual or community gardens, where plot sizes are smaller 

than in traditional agriculture [12]. Conversely, low-intensity UA is a production practice that requires 

a less intensive management system, is generally practiced in areas with poorer soil quality, produces 

relatively lower yields and is usually practiced in a collective garden [12]. High- and low-intensity 

vacant space yields are derived from yield ratios representing a range of community and collective 

gardens, which are more likely to be practiced on a large parcel of publicly owned land, such as vacant 

space. Both residential yields are derived from yield ratios that represent individual farmers with a 

varying degree of technical knowledge, farming experience and labour input. 

Hydroponic yields were compiled and averaged from a variety of sources, including several 

international studies [14,38], as well as Montréal’s Lufa Farms [39] (Lufa Farms is a commercial 

hydroponic rooftop farm that provides CSA baskets, as well as hosts its own farmers market). All  

low- and high-intensity yields were estimated by applying yield ratios to Statistics Canada [31] data 

for conventional vegetable yields in Québec. Low- and high-intensity vacant space yields per 

vegetable are estimated as a ratio of 0.53 and 1.12 of the corresponding conventional yield for that 

vegetable, respectively [12]. Low- and high-intensity residential space yields per vegetable were 

calculated using a ratio of 2.03 and 3.50 of the conventional yields [11,12,40]. The sources for the 

yields and yield ratios can be seen in Table 1. Since yields for individual gardens are more variable, 

two sources were averaged to provide the yield ratio for high-intensity residential space. These four 

yield values were applied as if production were happening year round, ignoring seasonality in the city. 

Table 2 shows the proportion that each vegetable represents in an average Montréaler’s diet and the 

associated yield for each type of potential growing space. The resulting wide range of yield values in 

these different farm management strategies are important in determining what proportion of the 

population could be fed in alternate scenarios.  

Table 1. Sources of yield and yield ratio data for various farm management systems. 

 
Low-Intensity 

Vacant Space 

High-Intensity 

Vacant Space 

Low-Intensity 

Residential 

High-Intensity 

Residential 
Hydroponic 

Yield Source 

Statistics 

Canada, 

2012 [31] 

Statistics Canada, 

2012 [31] 

Statistics 

Canada, 

2012 [31] 

Statistics Canada, 

2012 [31] 

Jenson, 1997 [14] 

Resh, 2004 [38] 

Lufa Farms, 

2012 [39] 

Yield Ratio 

Source 

Duchemin et al., 

2008 [12] 

Duchemin et al., 

2008 [12] 

Duchemin  

et al., 2008 

[12] 

Grewal and 

Grewal, 2012 [11] 

and Columbia 

Urban Design 

Lab, 2012 [40] 

N/A 

Yield Ratio 0.53 1.12 2.03 3.50 N/A 	  
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Table 2. Vegetable types and their associated yields using various farm management systems. 

Vegetable 

Type 

Proportion 

of Diet 

Low-Intensity 

Vacant Space 

(g/m2/y) 

High-Intensity 

Vacant Space 

(g/m2/y) 

Low-Intensity 

Residential 

Space  

(g/m2/y) 

High-Intensity 

Residential 

Space  

(g/m2/y) 

Industrial 

Rooftop 

Hydroponics 

(g/m2/y) 

Tomato 30% 707.02 1494.08 2708.02 4669 42,860 

Bush 

Beans 
1% 169.9816 359.2064 651.0616 1122.52 4550 

Cabbage 12% 2006.7019 4240.5776 7686.0469 13,251.805 26,922 

Cucumber 19% 985.8 2083.2 3775.8 6510 63,030 

Radish 8% 715.5954 1512.2016 2740.8654 4725.63 17,790 

Lettuce 11% 819.274 1731.296 3137.974 5410.3 43,025 

Turnip 8% 1920.826 4059.104 7357.126 12,684.7 87,600 

Pepper 11% 1437.572 3037.888 5506.172 9493.4 23,333 

2.3. Land Use and Population 

To conduct a spatial analysis, we obtained a land use map from the Communauté Urbaine de 

Montréal [41], as well as a map outlining the 33 boroughs of Montréal [42]. In order to avoid 

overestimating the potential space available for agriculture, roads were removed from all land uses on 

the map using an average width of 8 m per two-lane road (Lanes have an official width of 3.5 m,  

with an additional 1 m per road; a two-lane road is therefore 8 m wide) [43]. The population of each 

borough was obtained from the most recent Canadian census [35]. 

The land uses that were considered available for UA in the study are: vacant space, residential yard 

space and industrial rooftop space. Vacant space was defined as all unused space in a borough, including 

officially unexploited space and parking lots [41]. Though parking lots serve an important purpose, the 

land use map did not distinguish between these and other vacant spaces, therefore making them a 

limitation in the dataset. Industrial rooftop space was calculated by overlaying building footprints [42] on 

the land use map and calculating the area of all rooftops that fell within industrial land use. Residential 

yard space was calculated by sketching the yards from randomly sampled residential land parcels. In 

Google Earth, ten land parcel samples from each of low-, medium- and high-density residential 

housing were selected from across the island. During the digitization process, historical imagery from 

the closest possible date to that of the land use map was used. The proportion of lawn space relative to 

the size of the parcel was calculated and averaged for the three housing densities. In low-density 

housing areas (including semi-detached row housing), 27.68% of each land parcel was considered a 

potential area to implement UA. In medium-density (townhouses) and high-density (condominiums or 

apartments) residential areas, 20.13% and 21.27% of each parcel were allocated to UA space, 

respectively. High- and low-intensity UA yields were applied to these vacant and residential areas, 

while hydroponic yields were applied exclusively to industrial rooftops. 

The Permanent Agricultural Zone in Montréal extends over five peri-urban boroughs. This 

agricultural zone was left intact in the analysis. All production in this zone was assumed to be 

vegetable production with the conventional agriculture yields of Québec farmers, gathered from 

Statistics Canada [31]. The area of the Permanent Agricultural Zone is minor (~4% of the island’s 
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area) when compared to the amount of space that could potentially be devoted to UA and, so, does not 

have a major impact on the results of this study. 

Figure 1. The island of Montréal. 

 

2.4. Island Simulation Scenarios 

Simulations were conducted on two different scales: the island as a whole and for each borough 

independently. The island and its boroughs are shown in Figure 1. The island-wide analysis was carried 

out in order to estimate the percentage of vegetable demand that could be met by allocating agriculture to 

the previously described land use areas. We calculated and compared the following four scenarios: 

Island Scenario 1: Vegetable production is allocated to all vacant space on the island. This could be 

considered a low-risk plan that requires a relatively small financial investment. Public administration 

aims to convert and devote all vacant space available to agriculture, either as community or collective 

gardens. Presumably in this scenario, the aim would not be to solely produce food, but would also be 

to foster social and environmental benefits. For Scenario 1, two results were produced: one using  

low-intensity UA yields and a second one applying high-intensity UA yields, as described in  

Section 2.1. 

Island Scenario 2: Vegetable production is allocated to all industrial rooftop space using hydroponic 

yields. Scenario 2 can be characterized as an intensive investment into commercial UA in which a 

greenhouse is built on top of every industrial building. This would undoubtedly require a significant 

investment in both finances and labour. Scenario 2 produces one result, whereby all industrial rooftops 

are used to grow vegetables hydroponically. 
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Island Scenario 3: Vegetable production is allocated to residential yard space. Scenario 3 envisions 

a future where the UA movement expands and is practiced by every household. This scenario can be 

characterized as a mass action plan whereby everyone uses their available land for UA. In this case, 

two results were produced, one in which practitioners garden casually and do not have advanced 

farming techniques and a second one with high-intensity yields. 

Island Scenario 4: Combination of Scenarios 1, 2, and 3. In Scenario 4, a food production system in 

which the public converts vacant space into UA and residents grow personal gardens on their home 

lots is envisioned. Hydroponics would also be implemented on industrial rooftops. The goal of this 

scenario is to examine how easily the population could be fed given an idealistic and comprehensive 

UA system involving both the public and private sectors. This simulation produces 2 results: one in 

which low-intensity yields are applied to residential yard and vacant space and one in which  

high-intensity yields are applied to these areas. Both results utilize the same hydroponic yields on 

industrial rooftops. 

2.5. Borough Simulation 

The analysis at the borough level was conducted using a scenario in which the ability of each 

borough to produce its own food requirement was assessed. Use of residential and vacant space was 

maximized, and hydroponics use was minimized due to the increased financial and labour costs 

associated with the practice. Residential yard space and vacant space were used to produce both  

low- and high-intensity yields, as in Island Scenarios 1 and 3. The amount of hydroponics required to 

supplement this production in order to meet the vegetable demand per borough was calculated 

according to the following formula: ܦܪ(%) = 100 − ቆܴݒ() + ()ܦܸܻ()ݒܸ × 100ቇ	 (2)

where HDb is the percentage of the vegetable demand that would need to come from hydroponics to 

meet the vegetable demand for a borough, Rvb is the yearly amount of vegetables grown in residential 

yards, Vvb is the yearly amount of vegetables grown in vacant space and YVDb is the yearly vegetable 

demand in a borough. Boroughs where HDb is zero can produce sufficient vegetables to meet their 

population’s demand without requiring hydroponics, while boroughs with an HDb of 100 would 

theoretically have no residential or vacant space and would require all of their vegetable diet to come 

from hydroponics. The following formula was then applied to determine the percentage of each 

borough’s total industrial rooftop space that would be necessary to produce the required amount of 

vegetables hydroponically: 

(%)ܴܫ = ∑ቀቀܻܸܦ௩() − ൫ܴݒ௩() + ௩()൯ቁݒܸ ௩ܻൗ ቁܴܶܫ(మ) × 100	 (3)

where IRb is the percentage of total industrial rooftop space needed to meet the annual vegetable 

demand, YVDvb is the yearly vegetable demand of a single variety of vegetable in a borough, Rvvb is the 

amount of that vegetable grown in residential areas in the borough, Vvvb is the potential amount of that 

vegetable grown in vacant space in the borough, Yv is the low- or high-intensity yield for that 

vegetable and TIRb is the total available industrial rooftop space in the borough. Boroughs where IRb is 
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100 or greater would not be able to meet their vegetable demand, even if they utilized all of the 

industrial rooftop space for hydroponics. 

A performance index was created to measure the ability of each borough to support a high 

population density without resorting to hydroponic production to meet its vegetable demand. An ideal 

borough would support a high population density and would grow all of its vegetables using vacant or 

lawn space, eliminating the need for hydroponics. Assuming each borough implements average-yielding 

urban agriculture in its vacant and residential space, the need for hydroponic vegetable supplements 

per borough was plotted against the relative population density in order to assess which boroughs fit 

into this category. 

3. Results 

The results of the four island-wide simulations are listed in Table 3. The use of high- versus  

low-intensity urban agriculture had a large impact on the percentage of the population that can be fed, 

suggesting that the intensity of farming in vacant and residential space is important. Hydroponic use on 

industrial rooftops (Scenario 2) would produce an excessive amount of vegetables alone; however, this 

would require a much greater commitment, both socially and financially. By combining residential  

and vacant space for UA use (Scenario 1 and 3), 136.5% of the vegetable diet could be produced using 

the conservative low-intensity yield estimates. In this case, the vegetable demand could be met without 

major financial costs, even if practitioners were not experienced farmers. If practitioners were more 

experienced and committed to farming, the vegetable demand could be met using only a percentage of 

residential lawns alone (Scenario 3). Moreover, in the somewhat less realistic Scenario 4, where all 

vacant and residential space grows produce using low-intensity yields in combination with all industrial 

rooftops implementing hydroponics, Montréal’s vegetable demand can be met four-times over. 

Table 3. Four simulation scenarios expressing the percentage of vegetable demand met on 

the entire island of Montréal using either a low or a high estimate for urban agriculture 

(UA) yields. 

Island Scenario Low-Intensity Yields High-Intensity Yields

1. All vacant space 44.8% 75.5% 
2. All industrial rooftops 276.7% 
3. Residential yard space 91.7% 128.4% 

4. Vacant space, residential yard space and industrial rooftops 378.7% 446.1% 

The analysis conducted at the borough level assessed the amount of supplementary hydroponics 

required for each borough. Considering low-intensity yields (Figure 2), the borough with the highest 

hydroponic demand was Plateau-Mont Royal, where 74.8% of the vegetable demand had to be 

provided with hydroponics. Conversely, no hydroponics use is necessary to meet the vegetable 

demand in 19 of the 33 boroughs, accounting for 30.5% of Montréal’s population. When the same 

analysis was conducted with high-intensity yield estimates, 28 boroughs do not require hydroponics to 

meet their food demand. This accounts for 66.8% of Montréal’s population. The populations of each 

borough are listed in Table 4. 
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Figure 2. Percentage of hydroponics needed to reach vegetable demand after maximizing 

the use of vacant and residential yard space for low-intensity or high-intensity vegetable 

production. See Table 4 for the borough key. 

 

Table 4. Montréal boroughs and their associated population. 

ID Borough Population ID Borough Population 

1 Ahuntsic-Cartierville 126,891 18 Montréal-Ouest 5085 

2 Anjou 41,928 19 Outremont 23,566 

3 Baie-D’Urfé 3850 20 Pierrefonds-Roxboro 68,410 

4 Beaconsfield 19,505 21 Plateau-Mont-Royal 100,390 

5 Cote-des-Neiges-NDG 165,031 22 Point Trembles 106,437 

6 Cote-Saint-Luc 32,321 23 Pointe-Claire 30,790 

7 Dollard-Des Ormeaux 49,637 24 Rosemont-La Petite-Patrie 134,038 

8 Dorval 18,208 25 Saint-Laurent 93,842 

9 Hampstead 7153 26 Saint-Léonard 75,707 

10 L’ile-Bizard-Sainte-Geneviève 21,253 27 Sainte-Anne-de-Bellevue 5073 

11 Kirkland 18,097 28 Senneville 920 

12 Lachine 41,616 29 Sud-Ouest 71,546 

13 LaSalle 74,276 30 Verdun 66,158 

14 Mercier-Hochelaga-Maisonneuve 131,483 31 Ville-Marie 84,013 

15 Mont-Royal 19,503 32 Villeray-Saint-Michel-Parc-Extension 142,222 

16 Montréal-Est 3728 33 Westmount 19,931 

17 Montréal-Nord 83,868  Total 1,886,476 

In order to determine the infrastructural feasibility of these plans, the percentage of industrial 

rooftop space required to meet the demand for each borough was calculated. For example, some 

boroughs may require 50% of their vegetable demand to be produced through hydroponics, but do not 

have enough rooftop space to facilitate this. With low-intensity farming (Figure 3), seven boroughs did 
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not have the required rooftop space. However, with high-intensity estimates, only one borough was 

unable to grow enough vegetables with industrial rooftops: Plateau-Mont Royal. 

Figure 3. The percentage of industrial rooftop space needed to produce hydroponics after 

maximizing the use of vacant and residential yard space for low-intensity or high-intensity 

vegetable production. See Table 4 for the borough key. 

 

Figure 4. Performance indicator of each borough comparing hydroponic needs against 

relative population density, assuming average yield values (mean of high- and  

low-intensity yield estimates). Error bars show the variance in the need for hydroponics as 

farm management and yield values becomes more or less intense. Five outlier boroughs 

were excluded for visual clarity. 
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When comparing the performance of the boroughs, an ideal borough is considered to be able to 

support a high population density while farming in vacant and residential areas, without the need for 

hydroponics (Figure 4). Higher population density in a borough implies that there would be less space 

available for UA, since more land would be devoted to high-density residential housing. In these 

boroughs, supplementary hydroponics would likely be needed unless the boroughs have a surplus of 

vacant land available, as is the case with boroughs located in the bottom right quadrant of Figure 4. 

Only five boroughs are situated in the ideal quadrant; however, the error bars highlight the importance 

of farm management: with low-intensity yields, only four boroughs perform in the ideal quadrant 

compared to a potential of ten boroughs with high-intensity yield estimates. 

4. Discussion 

Despite being recognized as a green city, there is a surprising lack of quantitative data available on 

urban agriculture in Montréal. Given the assumptions made in this study, the results show that 

satisfying the vegetable demand of Montréal’s population is within reach. In Island Scenario 4, albeit  

a very idealistic scenario, the vegetable demand could easily be met if all vacant space, industrial 

rooftops and specified residential garden space were utilized for UA. These results appear to be 

attainable, even when using low-intensity yield estimates that could typically be obtained by an  

average household gardener. Alternatively, in a more realistic scenario, where vacant and residential 

yard spaces are used for UA with low-intensity yield estimates, the vegetable demand of the entire 

island could also be met. This result, while not immediately achievable, is encouraging for the UA 

enthusiasts in Montréal, as it shows that significant amounts of our diet could be produced on the 

island in the near future without the need of a significant financial buy-in. It is important to note, 

however, that there were some limitations and assumptions that were made during the course of the 

analysis. Given the high variability of UA yields due to weather patterns, growing season, air and 

water quality, fertilizer usage, crop sabotage and other external factors, these results may be 

overestimated. Conversely, some potential areas for UA, such as balcony space, were not considered 

due to data limitations. Nevertheless, the results support the same conclusions drawn in the Grewal and 

Grewal [11] study: UA can be a substantial tool for increasing food security and resilience in cities. 

Currently, most of the vegetables consumed on the island arrive from off-island sources [10], 

requiring each borough to import their respective vegetable requirement. If food were produced 

according to the island scenarios outlined in this paper, the boroughs with large amounts of vacant 

space would become producers for the more consumptive boroughs. They would be relied upon to fill 

the demand of the more residential boroughs that do not have adequate rooftop or vacant space to feed 

their own residents. This could create inequalities in food access and availability between boroughs, as 

prices and supply may vary by location. These inequalities negate one of the main advantages of UA: 

increased food security [9,11,22,44]. Generally, UA reduces some of the risks associated with a 

modern food production system by minimizing food miles, eliminating the middleman and increasing 

stability through food sovereignty [9,22,44]. Importing from a neighbouring borough, however,  

is still preferable to importing from distant rural areas, since it would be less costly and would reduce 

food waste. 
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The ability of each borough to meet its own vegetable demand is a more relevant metric than 

absolute production potential when determining where UA should take place. Using a multi-scale 

analysis and examining UA in this regard can help to devise sustainable methods of co-existing where 

we grow food. The boroughs examined in this study each contain different amounts of residents and 

proportions of land uses. Boroughs that require large amounts of rooftop space to meet their vegetable 

demand either have an extremely high population or an extensive amount of land that is dedicated to 

another land use type, such as commercial or industrial, making it difficult to implement effective UA 

in these areas. An ideal borough, within the framework of this study, is one where its land use 

composition supports both its population density and allows adequate food production space to meet 

its demand. 

The few boroughs that fell in the fourth quadrant of Figure 4 were able to accomplish this; 

although, the land use layouts of most boroughs were not ideally suited to perform well on this index. 

An ideal borough in this case could easily feed its population with its current land use, without needing 

hydroponics. Admittedly, urban planning policies should not necessarily force the under-performing 

boroughs to have similar infrastructure and land use configuration as those in Quadrant 4. There are 

many other factors that influence the planning of space in a borough, and this figure only captures one 

aspect. For example, land competition may emerge between the transportation, housing, industrial and 

agricultural sectors. If developers incorporate the applicability of UA in city layout and composition 

design, these results have implications for zoning and planning and should be investigated in more 

detail. Currently, disparities exist in access to fresh vegetables in Montréal [12,15,45]; however, these 

results show that this does not always have to be the case. Creating an urban layout in each borough 

where it is possible for production to meet or exceed the demands of its respective inhabitants would 

aid in eliminating some of the inequalities previously discussed. 

With regards to seasonality, the shortened growing season at this latitude would make it difficult  

to produce enough fresh earth-bound crops. However, in a Cleveland case study on UA [11] that 

considered both fresh and processed vegetable demand separately, considerable self-reliance was 

achieved, further strengthening the results of this study. In Montréal’s northern climate, meeting  

the year-round fresh vegetable demand would necessitate the use of hydroponics. While the exact 

effects of the shortened growing season are difficult to quantify, the excess of industrial rooftop space 

available island-wide suggests that meeting vegetable demand throughout the winter would not be a 

problem. The boroughs without enough useable rooftop space, however, will find themselves lacking 

in fresh vegetables in the winter, adding a temporal element to the issue of spatial inequality. 

Pundits of UA may argue that the implementation of large-scale operations would have resounding 

economic consequences for rural farmers. However, rural farmers are able to grow more extensive 

crops, like cereals, which carry a much higher production value than vegetables [23,46], thus preserving 

their livelihoods. 

5. Conclusions 

This research provides a starting point for further investigations on the potential of urban 

agriculture in Montréal. The analysis reveals that a strong potential exists for UA to play a significant 

role in meeting Montréal’s vegetable needs. In a broader sense, the results support the conclusions of 
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other case studies, confirming that implementing UA on a large scale, even at relatively high latitudes, 

can substantially increase the self-reliance and resilience of food systems in North American cities. 

Though these results are promising, they also raise many questions regarding the implications for 

zoning and redistricting plans, as well as the spatial-temporal patterns of inequality in food access and 

availability that may arise given the implementation of a large-scale UA operation. Examining this 

issue on multiple scales may reveal some of the intricacies of these interactions; however, there  

is a genuine need for indicators of food self-reliance that consider impacts of land use in addition to 

food demand. 

Further research is required in order to determine socio-economic and ecological trade-offs 

involved in the large-scale production of food in an urban environment and the development of an 

indicator of food self-reliance that considers these trade-offs. Only when all of the trade-offs are 

understood can we implement adequate policies. This study serves as a stepping-stone in that process 

by providing a range of potential vegetable produce available to a typical North American city and a 

multi-scale analysis that examines which land use compositions are conducive to UA. Hopefully, this 

data will be a useful element in the crafting of policy on land use planning with regards to urban 

sustainability and the looming food crisis [47]. 
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